ISSN 1600-5368

Andrew D. Bond* and John E. Davies

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study $T = 150 K$ Mean σ (C-C) = 0.002 Å R factor = 0.069 wR factor = 0.214 Data-to-parameter ratio = 19.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,5-Lutidine

The crystal structure of 3,5-lutidine (3,5-dimethylpyridine, C_7H_9N) has been determined at 150 (2) K following in situ crystal growth from the liquid. In space group $I2/a$, the asymmetric unit comprises half a molecule, each molecule possessing a crystallographic diad axis. Molecules are linked by linear $C-H\cdots N$ interactions into extended polar chains aligned in a parallel manner to form polar sheets. Adjacent sheets are arranged in an anti-parallel manner.

Comment

As part of a study devoted to improving the techniques for determining the crystal structures of substances that are liquids at room temperature, we have reported previously the crystal structure of 2,6-lutidine (2,6-dimethylpyridine) (Bond et al., 2001). We report here the crystal structure of the isomeric molecule, 3,5-lutidine, (I), determined at 150 (2) K following in situ crystal growth from the liquid.

In space group $I2/a$, the asymmetric unit comprises half a molecule, each molecule possessing a crystallographic diad axis passing through N1 and C4 (Fig. 1). Molecules are linked *via* linear C $-H \cdot \cdot N$ interactions [C4 $-H4 \cdot \cdot N1^i = 2.51$ (3) Å and C4 $-H4 \cdot \cdot \cdot N1^i = 180^\circ$; symmetry code: (i) x, 1+y, z] into extended polar chains, similar to those observed in the crystal structure of 2,6-lutidine. All chains propagate parallel to [010], forming polar sheets (Fig. 2) parallel to (101). Chains in adjacent sheets are arranged in an anti-parallel manner (Fig. 3) so that the crystal is not macroscopically polar. This is in contrast to the structure of 2,6-lutidine in which a change in the position of the methyl substituents produces a macroscopically polar structure in space group *Fdd2*, where all sheets are arranged in a parallel fashion. This observation may be of interest to researchers seeking organic molecular materials for non-linear optic (NLO) applications.

Experimental

The sample (99%) was obtained from the Aldrich Company and used without further purification. The crystal was grown in a 0.3 mm glass capillary tube at ca 256 K (a temperature only slightly less than the melting point of the solid in the capillary) using a technique described

Received 26 November 2001 Accepted 28 November 2001 Online 8 December 2001

organic papers

 \odot 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

organic papers

Figure 3

Projection of (I) parallel to the layers, showing the anti-parallel alignment of adjacent layers (CAMERON; Watkin et al., 1996).

Figure 1

The molecular structure and atom-labelling scheme for (I), showing displacement ellipsoids at the 50% probability level. Atoms related by the crystallographic diad axis are indicated by the suffix A (XP ; Sheldrick, 1993).

earlier (Davies & Bond, 2001). Once grown, the crystal was cooled to 150 (2) K for data collection. Although the diffraction pattern clearly contained contributions from more than one crystal (reflected to some extent in the relatively high R_{int} of 0.165), the pattern associated with the major crystal component was indexed successfully; only reflections associated with this component were included in the integration. The length of the cylindrical crystal was not estimated, but it exceeded the diameter of the collimator (0.35 mm).

Figure 2 Extended polar chains in (I), projected on to (101) (CAMERON: Watkin et al., 1996).

 \overline{a}

 \boldsymbol{b} \overline{c}

Data collection

Nonius KappaCCD diffractometer Thin-slice ω and φ scans Absorption correction: none 2651 measured reflections 912 independent reflections 620 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.214$ $S = 1.05$ 912 reflections 46 parameters H atoms treated by a mixture of independent and constrained refinement

com 1914 _{SS} \boldsymbol{R} 0.165

$$
\begin{aligned}\n &\theta_{\text{max}} = 0.105 \\
&\theta_{\text{max}} = 30.0^{\circ} \\
&\bar{h} = -10 \rightarrow 13 \\
&\bar{k} = -8 \rightarrow 8 \\
&\bar{l} = -10 \rightarrow 14\n \end{aligned}
$$

 \boldsymbol{h}

 \boldsymbol{k}

 \mathcal{I}

 $w = 1/[\sigma^2 (F_o^2) + (0.1018P)^2]$ $+ 0.203P$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\text{max}} = 0.21 \text{ e A}^{-3}$ $\Delta \rho_{\rm min} = -0.22$ e $\rm \AA^{-3}$

The H atoms of the methyl group were placed geometrically, assigned one common isotropic displacement parameter and allowed to rotate about their local threefold axis. Other H atoms were refined independently with individual isotropic displacement parameters.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1993) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97.

We thank the EPSRC for financial assistance towards the purchase of the Nonius CCD diffractometer.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Bond, A. D., Davies, J. E. & Kirby, A. J. (2001). Acta Cryst. E57, 01242-01244.

Davies, J. E. & Bond, A. D. (2001). Acta Cryst. E57, 0947-0949.

- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter and R. M. Sweet, pp. 307-326. London: Academic Press.
- Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.